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Abstract

Packer fluids for deep-water oil and gas wells are being developed currently to minimize the rate of heat transfer from the flowing production
fluid to the outer casing annuli. In this work we study a gel that has a yield point capable of preventing or drastically reducing natural convective
fluid flow and therefore the heat transfer that otherwise would occur from the production tubing to the production casing. The gel is modeled as a
Bingham material. The tubing-to-casing annulus is geometrically modeled as vertical and large parallel plates. This modeling is appropriate as the
radial extent of the annulus containing the fluid is usually small compared to the mean radius of the annulus. The flow is assumed to be laminar,
and in order to provide a reference case the solution to the linear viscous flow is first presented. The natural convection problem of the Bingham
fluid is described in five distinct regions within the gap between parallel plates, progressing from hotter to the cooler plate. The velocity and shear
stress distributions with some examples from the oil industry are given. Equivalent dimensionless numbers are developed for the Bingham fluid
in order to be able to use the available linear viscous correlation equations. The correlation results characterize the heat transfer performance of
the gel.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The results presented here are the first part of a more com-
prehensive investigation. The motivation for this investigation
is twofold: (i) prevention of heat transfer which would cause
heating and the buildup of large pressures in fluids trapped in
outer annuli between the layered casing strings of oil and gas
wells; and (ii) prevention of the occurrence of gas hydrates,
paraffin deposits and asphaltene formation in vertical produc-
tion lines. The buildup of trapped pressures in the fluids be-
tween casing annuli can lead to collapse of multiple casings
and loss of the entire well. This problem occurs because of too
much heat being transferred from the production tubing to the
surrounding casings. Gas hydrate, paraffin and asphaltene pre-
cipitation are the result of cooling the production fluid below
critical temperatures, and these can lead to plugging of the well
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production conduit [1]. This problem also occurs because of too
much heat being lost to the surroundings. Consequently, meth-
ods of minimizing heat transfer between hot production fluids
and outer, initially cold layers of the well are of considerable
practical interest, and various mechanical and fluid approaches
are being studied and used to achieve this purpose.

The oil industry is interested in using gels as packer fluids in
the annulus between the production tubing and the first (produc-
tion) casing in order to significantly reduce the heat transfer rate
to the outer casing annuli compared to having seawater in the
annulus behind the tubing. These special fluids can have rather
large gel strengths which can be detrimental if a casing has to
be removed as the fluid must be pumped out of the well. Such
fluids have been used with mixed success over a period of thirty
years both in producing wells and in steam injection wells.
The oil and gas industry sometimes tests these non-convecting
packer in large scale heating cells or in direct, instrumented
well performance to determine whether or not the fluid provides
the expectation of no-convection; but little work has been done
to fundamentally model and characterize the convective heat
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Nomenclature

C constant of integration that equals the maximum
value of shear stress

Cp specific heat at constant pressure of fluid
DH hydraulic diameter
g acceleration of gravity
H distance between plates
KE kinetic energy
KE/VOL average kinetic energy per unit volume for flow

k thermal conductivity of fluid
Pr Prandtl number
Q volume flow rate parallel plate duct
Gr Grashof number
Greq equivalent Grashof’ number
Ra Rayleigh number, Ra = Gr Pr
Re Reynolds number
Reeq equivalent Reynolds number
T (x) temperature distribution
V mean velocity of upward flow on hot side of

convective flow pattern
Vavg average velocity for flow in parallel duct
Vc upward velocity of hot core

v local upward velocity in y-direction, a function of
x

x coordinate across gap, x = 0 is at hot plate, x = H

is at cold plate
β the thermal coefficient of volumetric expansion of

the fluid
γ = ρg weight density
�p/�L pressure gradient along parallel plate duct
�T temperature differential across plates
μ dynamic viscosity
μE effective viscosity
ξ x/H

ξ1 value of ξ at hotter boundary of hot core
ξ2 value of ξ at colder boundary of hot core
ρ mass density of the fluid
τxy shear stress in flowing fluid
τMAX maximum shear stress in the natural convective

fluid flow
|τ |MAX maximum shear stress in the forced convection fluid

flow
τMIN minimum shear stress in the flowing fluid
τo yield point for Bingham material model
transfer of these non-Newtonian fluids. As more becomes know
about the relationship between traditional laboratory fluid prop-
erties (such as shear rate and yield point) and the consequent
convective heat transfer correlations, this will open up oppor-
tunities to better design packer fluids to achieve a combination
of traditional service roles plus effective insulation. A funda-
mental analysis of the relationship between fluid properties and
heat transfer correlation will enable an understanding of how to
design these fluids to fully perform as needed.

These special fluids can have rather large gel strengths which
can be detrimental when the fluid has to be pumped out of the
well for workover, recompletion, or abandonment. The limits
on the gel strength appear to be between the minimum value
that provides insulation (usually by preventing convection) and
the maximum value that permits pumping and removal of a cas-
ing string. When these limits are known, it will be prudent to
choose a gel strength at the low end of the range to minimize
both cost of the fluid and difficulty removing a string.

The literature on natural convective heat transfer for non-
Newtonian fluids is quite limited. Skelland’s book [2] gives a
good review of the previous research in this area. For the New-
tonian fluids we have several excellent sources and reviews of
the natural convective flows [3–6]. The presence of secondary
and tertiary flows for the flow between parallel plates is re-
ported by Elder [7]. As the temperature difference between
the plates increases, the flow patterns go from single cell to
multiple cell flow with cells having alternating signs for their
circulation. Gill’s [8] analytical approach models two boundary
layers separated by a core. Some predictions from this analysis
are compared with experimental results from Elder. Bejan [9]
modified Gill’s solution. Bejan’s predictions are shown to be in
agreement with several published works in the literature [3–6].
Several other very highly cited literature are mainly for the
Newtonian fluids [10–15].

In this work the gel is modeled, mathematically, as a Bing-
ham material. A Bingham fluid model has a yield point and a
linear shear stress – shear strain rate relation. The salient prop-
erty is that it takes a finite shear stress to initiate nonrigid-body
motion. This finite shear stress is called the gel strength. When a
temperature differential exists across parallel plates containing
Bingham fluid, the resulting linear temperature variation causes
the density to vary. The nonuniform density distribution causes
body forces and thus develops stresses. In order for flow to oc-
cur, the stresses must be sufficiently large to overcome the gel
strength. Consequently, a finite temperature differential is re-
quired to initiate convective flow.

Consider an undisturbed Bingham fluid between two, large,
vertical, parallel plates that are, initially, at a uniform tempera-
ture. There is a hydrostatic pressure that varies in the vertical
direction. Owing to the assumption of very large plates (ex-
tent of plates � gap between plates), the shear stresses vanish
everywhere. The fluid flow is assumed to be incompressible.
The gap in the plates is sealed around all the edges of the plates
and horizontal flow parallel to the plate surfaces is neglected.

The problem considered here is the determination of the
stress changes and velocities in the gel when a temperature
differential is applied across the plates. Only the steady-state
temperature distribution and laminar flow are considered. When
nontrivial flow is initiated, there can be no net vertical volume
flow at any elevation. Therefore, at each elevation, any sub layer
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with an upward flow must be accompanied with another sub
layer with a downward flow. Velocity components normal to the
plates are neglected so that the region in the center of a convec-
tion cell is being analyzed. Yang and Yeh [6] present a solution
for the mechanical flow of a Bingham material that is used in
this paper. In their work the temperature profile is assumed to
be linear across the gap and the solution is given in the form of
four simultaneous and nonlinear equations.

The hydrostatic component of the stress has no influence on
the initiation of nontrivial flow. In the problem considered here,
nontrivial flow is initiated by the shear stress that acts vertically
on the plate/fluid interface. When the magnitude of this shear
stress exceeds the gel strength, nontrivial flow will occur. That
is, there is no slip at the plate/fluid interface. The magnitude of
the corresponding shear rate equals the excess of the magnitude
of the shear stress over the gel strength divided by the plastic
viscosity.

When nontrivial flow occurs in this natural convection prob-
lem, there are five distinct regions of flow in the gap between
the parallel plates. They may be described as follows progress-
ing from the hotter plate to the cooler plate,

• upward velocity, shearing flow
• upward velocity, rigid-body motion (the hot core)
• first upward then downward velocity, shearing flow
• downward velocity, rigid-body motion (the cold core)
• downward velocity, shearing flow

The geometric symmetry of this problem makes possible a
simplification of the analysis. Only a section of the gel between
one plate and the mid-plane of the gel need be considered in the
mathematical analysis.

2. Viscous flow between vertical parallel plates

Consider the steady two-dimensional natural convection of
a viscous fluid in the slot shown in Fig. 1. For this vertical
enclosure for large aspect ratios r∗ = L/H , the motion may
be assumed to be parallel away from the ends, i.e., u = 0 and
v = v(x) where u and v are the velocity components in the x-
and y-directions. Hence the governing equations with the use
of the Boussinesq approximation reduces to

−dp′

dy
+ ρgβT ′ + dτxy

dx
= 0 (1a)

Fig. 1. Schematic of the enclosure.
v
∂T ′

∂y
= α

(
∂2T ′

∂x2
+ ∂2T ′

∂y2

)
(1b)

where the fluid properties β and α are assumed to be constant,
and p′ and T ′ are the deviations of pressure and temperature
from their values at the hydrostatic condition at p0 and T0,
i.e.,

p = p0 + p′ (2a)

T = T0 + T ′ (2b)

The boundary conditions are

at x = 0, v = 0, T = T0 + �T/2 (3a)

at x = H, v = 0, T = T0 − �T/2 (3b)

For very large aspect ratios r∗ = L/H , the vertical velocity
and the temperature distribution take the asymptotic form at all
points except either end of the enclosure. Eqs. (1a) and (1b) re-
duce to

ρgβT ′ + dτxy

dx
= 0 (4a)

d2T ′

dx2
= 0 (4b)

Eq. (4b) and its boundary conditions give the following linear
temperature distribution,

T (x) = �T

(
1

2
− x

H

)
(5)

where the hot plate is at x = 0 and the cold plate is at x = H .
Integrating Eq. (1a), the shear stress is determined by,

τxy = −1

2
ρgβH�T

(
x

H
−

(
x

H

)2)
+ C (6)

2.1. Linear (Newtonian) viscous flow

In order to provide a reference case, we present the solution
for the flow in the linear viscous case (gel strength = 0). Conse-
quently, this section is not concerned with a Bingham material.
The shear stress distribution given in Eq. (6) is now substituted
into the linear viscous flow equation as

μ
dv

dx
= τxy = −1

2
ρgβH�T

(
x

H
−

(
x

H

)2)
+ C (7)

where v is the vertical velocity in the y direction. This equation
may be integrated to obtain,

μv = −1

2
ρgβH�T

(
1

2

(
x

H

)2

− 1

3

(
x

H

)3)
+ Cx + D1 (8)

The boundary conditions given in Eqs. (3c) and (3d) that the
velocity vanish at x = 0 and x = H yield

C = 1

2
ρgβH�T (9a)

D1 = 0 (9b)

Then, for the linear viscous flow we have
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τxy = 1

2
ρgβH�T

((
x

H

)2

− x

H
+ 1

6

)
(10)

μv = 1

2
ρgβH�T

(
1

3

(
x

H

)3

− 1

2

(
x

H

)2

+ 1

6

(
x

H

))
(11)

The mean velocity, V , of the flow is calculated as

V = 2

H

x=H/2∫
x=0

V dx = ρgβ�T H 2

192μ
(12)

The maximum shear stress, τMAX and the minimum shear
stress, τMIN from Eq. (7) are

τMAX = C = 1

12
ρgβH�T (13a)

τMIN = C − 1

8
ρgβH�T = − 1

24
ρgβH�T (13b)

The average kinetic energy per unit volume, KE/VOL, is calcu-
lated to be

KE/VOL = 1

H

x=H∫
x=0

1

2
ρv2 dx = ρ(ρgβH�T )2H 2

15 120μ2
(14)

Then we have

KE/VOL

τMAX
= 1

1260
Gr (15a)

where Grashof number Gr, is defined as

Gr = ρ2gβ�T H 3

μ2
(15b)

The next section considers the problem treated in this section
when the fluid is modeled as a Bingham material.

2.2. Bingham fluid flow

The constant of integration, C in Eq. (7), is the value of the
shear stress at x = 0 and is also the maximum shear stress,

τMAX = C (16)

Fig. 2 shows how τxy varies across the gap. In order to have
nontrivial flow, the absolute value of τxy must exceed the gel

Fig. 2. Shear stress versus position in gel.
strength at each plate and in a central region. Only the left half
of the gel layer is shown in this figure owing to the symme-
try of this problem. In the graph, there is a core (the hot core)
that behaves as a rigid-body. The boundaries of this core are
x/H = ξ1 and x/H = ξ2 as indicated in Fig. 2. The corre-
sponding graph for the right side of the gel layer is a mirror
image about x/H = 0.5. Let the vertical velocity, parallel to
the plates, be v = v(x) so that the constitutive equations in the
flowing regions are as follows:

For 0 � x

H
� ξ1, μ

dv

dx
= τxy − τo (17a)

For ξ2 � x

H
� 1

2
, μ

dv

dx
= τxy + τo (17b)

Consider first the region, 0 � x/H � ξ1. In this region

at
x

H
= ξ1, τxy = τo and

ξ1 = 1

2
− 1

2

√
1 − 8

(
C

τo
− 1

)
τo

ρgH

1

β�T
(18)

Using the constitutive equation we have

μ
dv

dx
= τxy − τo

= −1

2
ρgβH�T

(
x

H
−

(
x

H

)2)
+ C − τo (19)

and integrating Eq. (19) and using the boundary condition v = 0
at x/H = 0 results

μv

τoH
= −1

2

ρgH

τo
β�T

(
1

2

(
x

H

)2

− 1

3

(
x

H

)3)

+
(

C

τo
− 1

)
x

H
(20)

Since v ≡ Vc at x/H = ξ1, we have

μVc

τoH
= −1

2

ρgH

τo
β�T

(
1

2
ξ2

1 − 1

3
ξ3

1

)
+

(
C

τo
− 1

)
ξ1 (21)

Now consider the region, ξ2 � x/H � 1/2. In this region

at
x

H
= ξ2, τxy = −τo and

ξ2 = 1

2
− 1

2

√
1 − 8

(
C

τo
+ 1

)
τo

ρgH

1

β�T
(22)

Using the constitutive equation gives

μ
dv

dx
= τxy + τo

= −1

2
ρgβH�T

(
x

H
−

(
x

H

)2)
+ C + τo (23)

and integrating Eq. (23) and using the boundary condition v = 0
when x/H = 1/2 results

μv

τoH
= −1

2

ρgH

τo
β�T

(
1

2

(
x

H

)2

− 1

3

(
x

H

)3

− 1

12

)

+
(

C + 1

)(
x − 1

)
(24)
τo H 2
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Fig. 3. ζ1 and ζ2 versus (ρgH/τo)β�T .

Since v ≡ Vc at x/H = ξ2, we have

μVc

τoH
= −1

2

ρgH

τo
β�T

(
1

2
ξ2

2 − 1

3
ξ3

2 − 1

12

)

+
(

C

τo
+ 1

)(
ξ2 − 1

2

)
(25)

The average velocity V , in the region 0 < x/H < 0.5 is
found by integration, in dimensionless form,

μV

τoH

= −ρgH

τo
β�T

(
ξ2

1

2
− ξ3

1

6
− ξ4

1

12
− 5

192
+ ξ2

12
− ξ3

2

6
+ ξ4

2

12

)

+ 2
C

τo

(
ξ2

1

2
+ ξ1(ξ2 − ξ1) − ξ2

2

2
+ ξ2

2
− 1

8

)

− 2

(
ξ2

1

2
+ ξ1(ξ2 − ξ1) + ξ2

2

2
− ξ2

2
+ 1

8

)
(26)

In both regions considered above, the velocity at the core,
moving as a rigid body, is designated as Vc. Since velocity must
be continuous across the gel layer, the values of Vc must be the
same for both regions as well as for the core. The condition that
Vc be the same in both regions leads to

−1

2

ρgH

τo
β�T

(
1

2
ξ2

1 − 1

3
ξ3

1

)
+

(
C

τo
− 1

)
ξ1

= −1

2

ρgH

τo
β�T

(
1

2
ξ2

2 − 1

3
ξ3

2 − 1

12

)

+
(

C

τo
+ 1

)(
ξ2 − 1

2

)
(27)

This is the equation that determines the dimensionless constant
of integration, C/τo. As ξ1 and ξ2 are functions of C, this
equation must be solved numerically, once (ρgH/τo)β�T is
specified. Values for (ρgH/τo)β�T in typical casing annuli
are in the neighborhood of 5 to 100. Fig. 3 gives the dependence
of ξ1 and ξ2 on (ρgH/τo)β�T . As (ρgH/τo)β�T increases,
ξ1 and ξ2 approach one another and the volume of the core,
moving as a rigid body, becomes smaller.
(a)

(b)

Fig. 4. (a) Maximum and minimum dimensionless shear stress versus β�T

for τo/(ρgH) = 0.008571. (b) Maximum and minimum dimensionless shear
stress versus β�T for τo/(ρgH) = 0.0008571.

2.3. Illustrative problem

The following parameters are chosen for an illustrative prob-
lem;

γ = 70 pounds per cubic foot = 9.358 pounds per gallon
H = 1 inch
τo = 5 pounds per 100 square feet
β = 0.0005 reciprocal degrees Fahrenheit
μ = 3.0E-7 psi-seconds

these parameters result in τo/γH = 0.008571. The value of
�T is varied from 0 to 440 degrees Fahrenheit so that β�T

varies from 0 to 0.22. Fig. 4(a) indicates how the shear stresses
at x/H = 0 and at x/H = 0.5 are altered when the value of
β�T changes. There is no flow until β�T = 0.1371 (�T =
274.2 ◦F). At this initiation point, the shear stresses are τo at
x/H = 0 and –τo at x/H = 0.5. Fig. 5(a) gives the locations
of the boundaries of the core undergoing rigid body motion.
As noted earlier, the thickness of the core reduces as β�T in-
creases in the flowing region of the curves. Fig. 6(a) shows the
dimensionless core velocity as a function of β�T . Note that a
dimensionless core velocity of 0.033 corresponds to a core ve-
locity of 3.183 feet per second. Fig. 7(a) gives the percentage of
the gel layer that is undergoing rigid-body motion as a function
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(a)

(b)

Fig. 5. (a) Position of core boundaries versus β�T for τo/(ρgH) = 0.008571.
(b) Position of core boundaries versus β�T for τo/(ρgH) = 0.0008571.

of β�T . For this illustrative problem, the percentage is seen to
be about 53% when β�T = 0.22 (�T = 440 ◦F).

This illustrative problem is typical for many wells at in-
stallation. Depending upon the gel, the gel strength may de-
crease with time and thus give less resistance to convective heat
transfer. To illustrate this effect, the above illustrative problem
was repeated with the same parameters except that τo was re-
duced by a factor of ten. That is, τo is equal to 0.5 pounds per
100 square feet. Figs. 4(b), 5(b), 6(b) and 7(b) correspond to
Figs. 4(a), 5(a), 6(a) and 7(a), respectively, for the initial illus-
trative problem and γ = ρg. It is interesting to note the rather
dramatic changes in the solution when the gel strength is re-
duced.

2.4. Limits on the validity of the laminar flow solution for
Bingham fluid

In the case of linear viscous fluids, the transition from lam-
inar flow to turbulent flow is governed by the value of the
dimensionless Reynolds number, Re. This transition in a duct
flow has been well established experimentally and occurs for
Re < 2000 [4]. The physical basis for choosing the Reynolds
number as a turbulent flow indicator is that it is a measure of
the ratio in laminar flow of the average kinetic energy per unit
volume of the flow to the maximum shear stress occurring in
the flow. The underlying notion is that, when this ratio becomes
large enough, any disruption in the flow (however small) will
(a)

(b)

Fig. 6. (a) Dimensionless core velocity versus β�T for τo/(ρgH) = 0.008571.
(b) Dimensionless core velocity versus β�T for τo/(ρgH) = 0.0008571.

cause the kinetic energy density to “overwhelm” the viscous
shear stress and lead to turbulent flow. The flow remains lam-
inar in a thin laminar sublayer near the wall but the primary
characteristics of the flow, such as axial pressure gradient, are
controlled mainly by momentum influences rather than viscous
influences. It is the purpose of this section to use this fundamen-
tal understanding to derive a criterion for the transition from
laminar to turbulent flow when the flowing fluid is a Bingham
material.

To begin, the expression for the Reynolds number for linear
viscous flow in a duct (or between parallel plates) is shown to
be proportional to the ratio of average kinetic energy per unit
volume to the maximum viscous shear stress in conventional
laminar duct flow. The definition of the Reynolds number for
duct flow is

Re ≡ ρVavgDH

μ
(28)

where ρ is the mass density of the fluid, Vavg the volume rate
of flow per unit duct cross-sectional area, DH is the hydraulic
diameter of the duct and μ the dynamic viscosity of fluid.

The linear viscous flow solution for laminar flow between
parallel plates separated by H/2 (assuming an imaginary wall
at the middle of the gap H ) without the gravitational forces and
for a constant pressure gradient, �p in the flow direction over
a channel height �L, using the same coordinates illustrated in
Fig. 1 is as follows:
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(a)

(b)

Fig. 7. (a) Percent (%) core gap versus β�T for τo/(ρgH) = 0.008571.
(b) Percent (%) core gap versus β�T for τo/(ρgH) = 0.0008571.

The velocity distribution:

v(x) = x(H/2 − x)

2μ

�p

�L
(29a)

The flow rate per unit depth:

Q = (H/2)3

12μ

�p

�L
(29b)

The average velocity:

Vavg = Q

H/2
= (H/2)2

12μ

�p

�L
(29c)

The velocity distribution in terms of the average velocity:

v(x) = 6Vavg

(H/2)2
x

(
H

2
− x

)
(29d)

The shear stress distribution:

τ = −μ
dv

dx
= − 6μVavg

(H/2)2

(
H

2
− 2x

)
(29e)

The maximum shear stress:

|τ |MAX = ∣∣τ(x = 0)
∣∣
MAX = −6μVavg

H/2
= −12μVavg

H
(29f)

where �p/�L is the pressure gradient along the duct length L,
Q is the volume rate of flow between the parallel plates, Vavg
is the average velocity of flowing fluid, v the velocity at dis-
tance x, and τ is the viscous shear stress at distance x.
The kinetic energy per unit depth becomes

KE =
x=H/2∫
x=0

1

2
ρv(x)2 dx = 3

5
ρV 2

avg
H

2
(30)

and the average kinetic energy per unit volume for a unit height,
KE/VOL is

KE/VOL = KE

H/2
= 3

5
ρV 2

avg (31)

Since the maximum value of the viscous shear stress, τMAX, is

|τ |MAX = 6μVavg

H/2
= 12μVavg

H
(32)

Then we have

KE/VOL

|τ |MAX
= 1

20

ρVavgH

μ
= 1

20
Re (33)

where the hydraulic diameter DH = H for half the distance
between the plates H/2. Here it is shown that the Reynolds
number is proportional to the ratio of average kinetic energy
per unit volume to the maximum viscous shear stress in lami-
nar flow.

Now consider the case of a Bingham fluid flowing between
parallel plates. If the physical reasoning that is applied above
is used for the Bingham fluid case, then a criterion may be de-
veloped for the transition from laminar flow to turbulent flow.
The solution obtained above will now be used to develop the
criterion. That is, an “equivalent Reynolds number”, Reeq, is
derived that is defined in terms of the average kinetic energy
per unit volume and the maximum shear stress as

Reeq = 20

(
KE/VOL

|τ |MAX

)
Bingham

(34)

The above analysis showed that the parameter, C, is the maxi-
mum value of the shear stress so it is only necessary to find the
average kinetic energy per unit volume, KE/VOL. The deriva-
tion is sketched below.

KE/VOL = 1

H

ρτo2H 2

μ2

x=H/2∫
x=0

(
μv

τoH

)2

dx

= ρτo2H 2

μ2

[ x/H=ξ1∫
x/H=0

(
μv

τoH

)2

d

(
x

H

)

+
(

μV

τoH

)2

(ξ2 − ξ1)

+
x/H=1/2∫
x/H=ξ2

(
μv

τoH

)2

d

(
x

H

)]
(35)

This integral is separated into three pieces so that,

(KE/VOL)Bingham = KE/VOL1 + KE/VOL2 + KE/VOL3 (36)

where
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KE/VOL1 = ρ τo2H 2

μ2

[
A2

(
1

20
ξ5

1 − 1

18
ξ6

1 + 1

63
ξ7

1

)

+ 2AB1

(
1

8
ξ4

1 − 1

15
ξ5

1

)
+ B2

1
1

3
ξ3

1

]
and

A = −1

2

ρgH

τo
β�T and B1 = C

τo
− 1

KE/VOL2 = ρ τo2H 2

μ2

[
A2

(
1

2
ξ2

1 − 1

3
ξ3

1

)2

+ 2AB1

(
1

2
ξ3

1 − 1

3
ξ4

1

)
+ B2

1ξ2
1

]
(ξ2 − ξ1)

KE/VOL3 = ρ τo2H 2

μ2

{
A2

[
1

20

(
1

32
− ξ2

2

)
+ 1

63

(
1

128
− ξ7

2

)

+ 1

144

(
1

2
− ξ2

)
− 1

18

(
1

64
− ξ6

2

)

− 1

36

(
1

8
− ξ3

2

)
+ 1

72

(
1

16
− ξ4

2

)]

+ 2AB2

[
1

8

(
1

16
− ξ4

2

)
− 1

15

(
1

32
− ξ5

2

)

− 1

24

(
1

4
− ξ2

2

)
− 1

12

(
1

8
− ξ3

2

)

+ 1

24

(
1

16
− ξ4

2

)
+

(
1

2
− ξ2

)]

+ B2
2

[
1

3

(
1

8
− ξ3

2

)
− 1

2

(
1

4
− ξ2

2

)

+ 1

4

(
1

2
− ξ2

)]}
and B2 = C/τo + 1.

We also use Eq. (15a) to define an equivalent Grashof num-
ber, Greq as

Greq = 1260

(
KE/VOL

τMAX

)
Bingham

(37)

It should be noted that for the problem we have under consid-
eration if we assume τMAX ∼ |τ |MAX = C for Eq. (34). Then
from Eqs. (34) and (37), we have

Greq ∼ 63 Reeq (38)

An effort is made in the following part of this report to relate
this work to the Batchelor’s paper [15]. The main emphasis in
the Batchelor paper is on air cavities in windows and between
double walls in buildings. The work is, of course, for Newtonian
viscous fluids. In the analysis, Batchelor uses two criteria to
determine if the laminar-turbulent transition for the convecting
flow has occurred. In order to have natural convective turbulent
flow between infinitely long parallel plates both criteria must be
met. The criteria are,

1. The value of the Rayleigh number Ra, based on vertical
length, L, must exceed 109. That is,

Ra = Gr Pr >

(
H

L

)3

109 (39)
2. The Reynolds number must exceed 300.

In this work, the Grashof number is 63 times the Reynolds’
number so this condition, in terms of the Rayleigh number with
Pr = 0.7326 is,

Ra = Gr Pr = 63 Re Pr = 18,900 Pr = 13,846

In Batchelor’s work the 13,846 in the above equation is 13,700
as taken from Fig. 4 of Batchelor’s paper [15]. That figure
shows that when the cube root of the Rayleigh number is speci-
fied and it satisfies the second turbulent flow condition, a value
of L/H is determined from the first turbulent flow condition.
This is the height-to-width ratio for the laminar-turbulent tran-
sition. When the actual ratio is less than this value, the flow is
laminar. When the actual ratio is greater than this, the flow is
turbulent. When the second turbulent flow condition is not sat-
isfied, the flow will be laminar for any height-to-width ratio. It
is interesting to note that the curves for the two conditions in-
tersect at a height-to width-ratio of 42.

3. Conclusions

The most important conclusion is that the influence of gel
strength on convective heat transfer rate in oil industry applica-
tions is quite strong. This paper would help to the development
free convective heat transfer correlation equation and the pres-
sure drop calculations for the non-Newtonian packer fluid. It
will link fluid thermal performance to the laboratory properties
and will enable the creation of “designer fluids”. In addition
being able to reduce the heat transfer is critical to the longevity
and economic viability of wells. Another conclusion is that the
temperature differential required to initiate flow can be appre-
ciable in practical applications. These conclusions are sufficient
to justify the development of a new design procedure for gels.
The mathematical model for the fluid used here is the Bingham
material. Attitudes differ concerning the appropriateness of this
model. The model was developed because it is simple enough to
permit explicit mathematical solutions for flow problems. There
are other characteristics of real gels that are not captured by this
model, as given by Darley and Gray [16]. The most significant
shortcoming of the Bingham material is for transient problems.
When the gel strength is derived from electrical forces between
particles, the gel strength is a function of the history of the
shearing rate in the material. In some formulations this phe-
nomenon is accounted for by allowing the gel strength to be
a function of the deformation rate history. This breakdown of
the gel strength with flow will alter the flow solution. If fluids
are considered that have considerable gel strength breakdown,
the results presented here may need to be extended to account
for this behavior. Another shortcoming of the Bingham mater-
ial model is the way the gel strength is taken as the minimum
stress for which there can be deformation. It is true that real
gels exhibit behavior that is like a very high viscosity viscous
fluid when the stress is below the gel strength. Other models
for gels have properties that are tied to the chemical structure
of the fluid. These models are very helpful during the develop-
ment and modification of gels. The investigation presented here
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is concerned only with mechanical properties and needs to be
as mathematically elementary as can be justified.
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